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4. Groups Theory and Quantum Mechanics 

4.1 Functions as basis for the representation of a group 

So far we have considered the action of symmetry operations on the coordinates of points. In 

analogy we can define the action of the symmetry operation R̂  on a function f: 

( ) ( )rRfrfR rr 1−= ˆˆ . 

Now we can use a set of n functions f1, f1,...,fn. The set forms a basis for a representation of 

the group if the following holds: 
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( )RΓ  is a representation of the symmetry group in the n-dimensional basis f1, f1,...,fn. We say: 

f1, f1,...,fn  span a basis for a n-dimensional representation of the group. 

(4.1 Example: effect of symmetry operations on functions and atomic orbitals as basis sets). 

 

4.2 Wave functions as basis for irreducible representations 

We are interested in the symmetry properties of a wave function ψ , which is solution of the 

Schrödinger equation 

EψψH =ˆ . 

We consider a symmetry operation R̂  of the system. As the symmetry operation transform 

the system into an physically equivalent state, we expect that Hamilton operator Ĥ  should be 

invariant with respect to the transformation into a new basis: 

RHRH ˆˆˆˆ 1−=   or  RHHR ˆˆˆˆ = , 

i.e. Ĥ  and R̂  commute. 

(4.2:  Detailed consideration of commutability). 

 

This has important implications for the eigenfunctions of Ĥ : 
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• Case 1: non-degenerate eigenfinctions: 

Schrödinger equation: iii ψEψH =ˆ  

symmetry operation: iii ψERψHR ˆˆˆ =  

    ( ) ( )iii ψREψRH ˆˆˆ =  

iψR̂ is eigenfunction of Ĥ  with eigenvalue Ei. As the system is non-degenerate (by 

definition), it follows: ii ψψR ±=ˆ  , i.e. non-degenerate eigenfunctions of Ĥ  belong to a 1-

dimensional irrep of the group. 

• Case 2: degenerate eigenfunction: 

Schrödinger equation: kiiliil ψψEψH ..,
ˆ

1    ∀=  

symmetry operation: ( ) ( )iliil ψREψRH ˆˆˆ =  

iψR̂  is eigenfunction of Ĥ  with eigenvalue Ei. As the system is k-fold degenerate, iψR̂  

can be a linear combination of the eigenfunctions kiψ ..,1 : ∑=
=

k

j
jjlil ψrψR

1

ˆ  , i.e. a set of k 

degenerate eigenfunctions of Ĥ  belongs to a k-dimensional irrep of the group (note: (1) 

any linear combination of eigenfunctions of degenerate levels is eigenfunction of the 

system as well; (2) if the representation was reducible, the functions would not have to be 

transformed into each other. In this case the eigenvalues would not have to be identical as 

well). 

(4.3: Example, 2p orbitals of NH3). 

 

4.3 Direct product of functions 

We assume two sets of functions 

mXXX ,...,, 21  and   nYYY ,...,, 21 , 
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which form a basis for a representation of the group (for example two sets of wavefunctions). 

What is the symmetry of the product functions jiYX  (extremely important question, a product 

function occur often in quantum mechanics)? 

We consider the application of symmetry operation R̂ : 

∑=
=

m

j
jiji XxXR

1

ˆ  and  ∑=
=

n

j
jiji YyYR

1

ˆ . 

Application to product: 

{
∑∑=∑=

= ==
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z
yxYRXxYXR

1 11

klji,

ˆˆ . 

klijz ,  is a matrix of dimension (nm)×(nm). 

The functions jiYX  with mjni ,...,;,..., 2121 ==  are called the direct product of iX  and jY  

( YX ⊗ ). They span a basis for a representation of the group of dimension m×n. 

 

For the characters of the direct product we obtain: 

( ) ( ) ( )RχRχyxzRχ yx
j l

lljj
lj

jljlz =∑ ∑=∑=
,

,  

i.e. the characters of the representation spanned by the direct product of two sets of functions 

are the products of the characters of the original representations. 

Note: With section 3.13 we can immediately determine, which irreps are contained in the 

direct product! 

 

4.4 Nonzero matrix elements 

Why are direct products do important? In quantum mechanics we are often interested in 

matrix elements of an operator, e.g. if we would like to determine the expectations value of an 

observable. These matrix elements are of the type, i.e. they contain direct products of 

functions (and operators): 
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dτff BA∫ *   or  BA ff  

dτfOf AA
ˆ*∫   or  BA fOf ˆ . 

Such matrix elements can only be nonzero, it the function over which we integrate is 

completely symmetric or contains a completely symmetric part. 

(4.4: Example: integration over odd or even function). 

 

Important: The representation of a direct product contains the totally symmetric 

representation only if the representations of the product functions are of identical symmetry 

(or at least contain a part with identical symmetry). 

 

Proof: 

We consider two sets of functions BA ⊗ . The characters of the direct products are ABχ . For 

an arbitrary irrep of the group i we obtain (compare section 3.13) 

( ) ( )RχRχ
h

a AB
R

ii ∑=
1  

for the number of irreps of symmetry type i, contained in BA ⊗ . For the totally symmetric 

irrep: 

( ) ( ) ( ) AB
R

BA
R

ABi δRχRχ
h

Rχ
h

a =∑=∑=
11  (compare section 3.12) 

Consequently, A and B must be of identical symmetry in order to contain the totally 

symmetric representation. 

(4.5: Example: direct products in C3V). 

 

4.5 Examples for matrix elements 

4.5.1 Hamilton operator: BHA ˆ   
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As discussed before, Ĥ  is totally symmetric with respect to the symmetry operations of the 

system, i.e. 1A
H

=Γ ˆ . Therefore:  

fifHifHf BA

Γ⊗Γ=Γ⊗Γ⊗Γ=Γ ˆˆ  

Hamilton matrix elements of wave function of different symmetry are zero. 

 

4.5.2 Dipole operator: BμA ˆ   

Electric dipole operator: 
321r321r321r
z

i
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zq

μ

yq

μ

xqμ ∑+∑+∑=ˆ  ( ii rq r, : charge, position of particle i) 

The parts of the dipole operator have the symmetry of the functions x, y, z. 

Case A: Permanent dipole moment AμA ˆ  

z

A

AAzμ

yAAyμ

xAAxμ

Γ⊗

Γ

Γ⊗Γ=Γ

Γ⊗Γ⊗Γ=Γ
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ˆ

ˆ

ˆ

 

A permanent dipole moment exists if the symmetry of x, y or z is contained in 2

AΓ . Note: 2

AΓ  

always contains the totally symmetric representation. 

 

Case B: Transition dipole moment iμf ˆ  

A nonzero transition dipole moment requires that at least one of the components 

zfizμ

yfiyμ

xfixμ

Γ⊗Γ⊗Γ=Γ

Γ⊗Γ⊗Γ=Γ

Γ⊗Γ⊗Γ=Γ

ˆ

ˆ

ˆ

   

contains the totally symmetric representation (IR, VIS, UV spectroscopy).  

(4.6: Example: permanent dipole moments in ammonia). 
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4.6 Projection operators 

The last section demonstrates that it is useful to construct wavefunctions, which represent a 

basis for the irreps of the symmetry group. If this is the case, we can easily decide which 

integrals are zero and which can be nonzero. How are these functions constructed in a general 

fashion? 

Example: 

We consider a set of atomic wave functions, i.e. the three 1s function located at the H atoms 

of a NH3 molecule: 

 

(1) These functions span a basis for a three dimensional representation of the group C3V 

(i.e. the symmetry operations of the group transform the wave functions into linear 

combinations of each other). 

(2) The representation is reducible (as there are only 1 and 2 dimensional representations 

in C3V). 

We have to perform a transformation to a new basis, which transforms the representation into 

a ret of irreps of C3V (i.e. blockdiagonalizes the transformation matrices). This new symmetry 

adapted basis is constructed applying a set of projection operators: 

 

We consider a set of il  functions i
l

ii
i i

φφφ ,...,, 2 , which correspond to the i-th irrep of the group 

which has dimension il . Now we apply an operation of the group R to one function i
tφ : 

( ) i
s

s

i
st

i
t φRφR ∑Γ=  ˆˆ  (definition of the representation). 
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By left-multiplication with / summation over operations of the group ( )∑Γ
R

j
ts R  *ˆ
'' : 

( ) ( ) ( )
( ) ( )∑ ∑ ΓΓϕ=
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Interpretation: j
tsP ''

ˆ  acts on some function i
tϕ . Only if this function contains a component 

which belongs to the irrep j and within this irrep exactly to the function t’,  the operation will 

yield the s’-th function if irrep j.  

Most important case: 

''''
ˆ

ttij
i
t

i
t

j
tt δδP ϕ=ϕ  

The operator acts on a function i
tϕ . Only if this function contains the t’-th function of irrep j 

the operation yields j
t'ϕ  (i.e. the t’-th function of irrep j). In other words: the operator 

“projects” the component of desired symmetry out of the starting function. 

 

Consequently, we can generate the desired set of symmetry adapted functions by applying all 

projection operators to the full set of function spanning the representation. The drawback: we 

need the full representation matrices, but all we have are the characters (from the character 

table). 

Therefore we construct a simplified projection operator: 

( )∑Γ=
R

j
tt

jj
tt RR

h
l

P ˆˆˆ
''''  *  

By summing over the functions contained in irrep j: 
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⇒   ( )∑=
R

jjj Rχ
h
l

P ˆˆˆ  R  

Note: the functions generated by the simplified operator are not orthogonal. The have to be 

orthogonalized “manually”. 

(4.7: NH3: generation of symmetry adapted H-s functions). 

 

 


